C(1'B) - C(2'B) - O(21B)	115.5 (2)	C(1'B) - C(2'B) - C(3'B)	120.0 (3)
O(21B) - C(2'B) - C(3'B)	124.5 (3)	C(2'B) - O(21B) - C(21B)	117.5 (3)
C(2'B) - C(3'B) - C(4'B)	119.5 (3)	C(3'B) - C(4'B) - C(5'B)	121.1 (3)
C(4'B) - C(5'B) - C(6'B)	119.1 (3)	C(1'B) - C(6'B) - C(5'B)	121.4 (3)

Only coordinates of H atoms attached to N atoms were refined, with distance restraint N—H = 0.90 Å (weight 10^{+8}); $U = 1.2U_{eq}(C_{aromatic})$ or $1.2U_{eq}(N)$ or $1.5U_{eq}(C_{methyl})$; H atoms attached to C atoms were not refined. Refinement was carried out using *SHELXTL* (Sheldrick, 1983).

Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71750 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1077]

References

Antolini, L., Vezzosi, I. M., Battaglia, L. P. & Corradi, A. B. (1985). J. Chem. Soc, Perkin Trans. 2, pp. 237-239.
Berger, B. (1993). PhD thesis, Univ. of Frankfurt, Germany.
Sheldrick, G. M. (1983). SHELXTL User's Manual. Revision 4.

Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1994). C50, 775-777

Ein Zwölfring mit Phosphor(V), Kohlenstoff und Dimethylhydrazin als Ringbausteinen und großen endocyclischen Torsionswinkeln um die N—N-Bindungen

UDO ENGELHARDT UND MEHDI ROSEFID

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstr. 34-36, D-14195 Berlin, Deutschland

(Eingegangen am 1. April 1993; angenommen 18 August 1993)

Abstract

1,2,4,5,7,8,10,11-Octamethyl-6,12-dioxo-3,9-diphenoxy-1,2,4,5,7,8,10,11-octaaza- $3\lambda^5$, $9\lambda^5$ -diphosphacyclododecane 3,9-disulfide (1) is the dimer of the expected product of the reaction of bis(1,2-dimethylhydrazido)thiophosphoric acid phenyl ester with ethyl chloroformate. The title compound is the Z isomer. The 12-membered ring has a strongly puckered conformation with endocyclic P—N—N—C torsion angles from -84 (1) to -106.8 (9)° and C—N—N—C torsion angles from -73 (1) to -76 (1)°. The mean N—N bond distance of 1.40 (1) Å is at the lower end of the observed range in smaller P^V-hydrazine rings.

Kommentar

Anorganische Phosphor-Hydrazin-Sechsringe werden seit einiger Zeit von uns synthetisiert und Strukturell untersucht. Sie liegen vielfach in einer stabilen Twistkonformation vor. Dies hängt in großem Maße von der Raumbeanspruchung der Ringsubstituenten ab (Engelhardt, Bünger & Viertel, 1984). Da nur sehr wenige Strukturen anorganischer, nicht-alternierender Heterocyclen mit mitlerer Ringgröße bekannt sind, deren Daten im Vergleich mit verwandten Phosphor(V)-Hydrazin-Sechsringen interessant erscheinen, haben wir die Strukturuntersuchung von (1) durchgeführt, das bei der Umsetzung des entsprechenden Thiophosphorsäuredihydrazids mit Chlorameisensäureethylester wider Erwarten als Dimeres isoliert wurde.

Die asymmetrische Einheit wird durch ein Molekül der Titelverbindung gebildet (Fig. 1). Der Ring ist stark gewellt. Die auf der gleichen Seite des Rings liegenden Phenoxy-Gruppen stehen nahezu axial, die Schwefelatome an den Phosphorringatomen dagegen quasi äquatorial. Besonders auffällig ist die starke Verdrillung um die N-N-Bindungen im Ring. Die Torsionswinkel um diese Bindungen (Tabelle 2) haben verglichen mit analogen Phosphor-Hydrazin-Sechsringen sehr hohe Werte. C(1)—N(1)—N(2)—C(2) - 74(1), C(4)— -74(1), C(7)—N(7)—N(8)— N(4) - N(5) - C(5)C(10) - N(10) - N(11) - C(11)C(8) -73(1), $-76(1)^{\circ}$. Die C···C-Kontaktabstände zwischen Methyl-C-Atomen an benachbarten N-Atomen sind dementsprechend mit im Mittel 3,09 (2) Å im Bereich zu erwartender van-der-Waals-Kontakte. In den Sechsringen führen dagegen sterische Wechselwirkungen zwischen diesen Methylgruppen zu einer Begünstigung der Twist-Konformation mit ihren gegenüber der Sessel-Konformation größeren C—N—N—C-Torsionswinkeln. Die N—N-Abstände liegen mit im Mittel 1,40 (1) Å am unteren Ende des Erfahrungsbereichs und sind vergleichbar mit denen in den entsprechenden Sechsringen mit Carbonyl-Baugruppe (Engelhardt & Simon, 1992). Besonders kurze intermolekulare Abstände finden

sich in der Struktur nicht [kürzester Nicht-H-X-Abstand: C(2)...O(12ⁱ) 3,30 (1) Å; (i) 1-x, -y, $-\frac{1}{2}+z$].

Fig. 1. Mölekülgestalt und Numerierungsschema für die asymmetrische Einheit (H-Atome weggelassen). Die Numerierung der H-Atome folgt dem Schema: Methylgruppen: H(11) bis H(13) an C(1), H(21) bis H(23) an C(2), usw., H(101) bis H(103) an C(10), H(111) bis H(113) an C(11); Phenylgruppen: H(1401)-H(1801) an C(14)-C(18), H(2101) bis H(2501) an C(21) bis C(25).

Experimentelles

Bei der Darstellung der Sechsringverbindung 1.2.4.5-tetramethyl-6-oxo-3-phenoxy-3-thioxo- $3\lambda^5$ -phosphacyclohexan aus Chlorameisensäureethylester und Bis(1,2-Dimethylhydrazido)thiophosphorsäure-O-phenylester (Bünger, 1983) in Gegenwart von Triethylamin in abs. thf wird das Rohprodukt nach Abtrennen des ausgefallenen Triethylaminhydrochlorids und Entfernen des Lösungsmittels im Vakuum mehrmals mit Ether extrahiert. Während die ersten Extrakte fast ausschliesslich die gewünschte, oben genannte Sechsring-Verbindung enthalten (Simon, 1992), kristallisieren aus dem letzten Auszug prismenförmige Kristalle von (1) aus. Durch Umkristallisieren aus Toluol (F_p = 626.8 K) wurden für die Röntgenstrukturanalyse geeignete Einkristalle erhalten.

Kristalldaten	
$C_{22}H_{34}N_8O_4P_2S_2$	Mo $K\alpha$ Strahlung
$M_r = 600,63$	$\lambda = 0,71069 \text{ Å}$
Orthorhombisch	Gitterparameter aus 78 Re-
$Pna2_1$	flexen
a = 21,647 (5) Å	$\theta = 5 - 12.5^{\circ}$
b = 11,738 (2) Å	$\mu = 0.27 \text{ mm}^{-1}$
c = 11,415 (3) Å	T = 293 K
$V = 2900 (2) \text{ Å}^3$	Prismenförmig
Z = 4	$0.5 \times 0.45 \times 0.25 \text{ mm}$
$D_x = 1,376 \text{ Mg m}^{-3}$	Farblos
•	

Datensammiung
Enraf-Nonius CAD-4
Diffraktometer
ω Abtastung
Absorptionskorrektur:
keine
1989 gemessene Reflexe
1888 unabhängige Reflexe
1162 beobachtete Reflexe
$[I > 2\sigma(I)]$
$R_{\rm int} = 0.01$

- Verfeinerung Verfeinerung auf F R = 0.053wR = 0.031S = 1.221618 Reflexe mit $F_c > F_o$ 373 Parameter $(\Delta/\sigma)_{\rm max} = 0.30 \ [U_{22} \ C(22)]$ $\Delta \rho_{\text{max}} = 1.1 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.2 \text{ e } \text{\AA}^{-3}$
- $\theta_{\rm max} = 22^{\circ}$ $h = 0 \rightarrow 22$ $k = 0 \rightarrow 12$ $l = 0 \rightarrow 12$ 3 Kontrollreflexe gemessen nach je 100 Reflexe Intensitätsschwankung: <1%
- Extinktionskorrektur: isotrop Extinktionskoeffizient: 1,27(7) Atomformfaktoren aus Cromer & Mann (1968); Stewart, Davidson & Simpson (1965)

Tabelle 1. Fraktionelle Atomkoordinaten und isotrope Äquivalente der Verschiebungsfaktoren (Å²)

$U_{\mathbf{a}\mathbf{a}} = \frac{1}{2} \sum_{i} \sum_{i} U_{ii} a_{i}^{*} a_{i}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{i}.$

	x	у	z	$U_{\overline{a}a}$	
S (1)	0,5110 (1)	0,2047 (3)	0,1766	0,078(2)	
S(2)	0,7754 (2)	0,2427 (3)	0,7577 (4)	0,083 (2)	
P(3)	0,5746(1)	0,1820 (2)	0,2922 (4)	0,053 (2)	
P(9)	0,7230(1)	0,1948 (2)	0,6322 (4)	0.048 (2)	
O(1)	0,5801 (3)	0,2746 (5)	0,3939 (6)	0,043 (4)	
O(2)	0,6880 (3)	0,2903 (5)	0,5592 (5)	0,049 (5)	
O(6)	0,7345 (3)	0,3206 (6)	0,2898 (7)	0,072 (6)	
O(12)	0,5527 (3)	0,1762 (6)	0,6602 (8)	0,069 (6)	
N(1)	0,5383 (4)	0,0794 (7)	0,489 (1)	0,060 (7)	
N(2)	0,5686 (4)	0,0658 (7)	0,382 (1)	0,061 (7)	
N(4)	0,6437 (4)	0,1710 (6)	0,2316 (8)	0,051 (6)	
N(5)	0,6925 (4)	0,1443 (7)	0,3097 (8)	0,054 (7)	
N(7)	0,7757 (4)	0,1972 (7)	0,4228 (9)	0,054 (6)	
N(8)	0,7558 (4)	0,1293 (7)	0,5164 (8)	0,048 (6)	
N(10)	0,6700 (4)	0,1022 (6)	0,6781 (9)	0,052 (6)	
N(11)	0,6300 (4)	0,0632 (7)	0,5933 (8)	0,046 (6)	
C(1)	0,4740 (5)	0,114(1)	0,485 (1)	0,096 (10)	
C(2)	0,5505 (5)	-0,038 (1)	0,319 (1)	0,071 (9)	
C(4)	0,6576 (6)	0,183(1)	0,110(1)	0,096 (11)	
C(5)	0,7120 (5)	0,0218 (8)	0,298 (1)	0,066 (8)	
C(6)	0,7338 (5)	0,228 (1)	0,338(1)	0,049 (8)	
C(7)	0,8251 (5)	0,2751 (8)	0,447 (1)	0,087 (10)	
C(8)	0,7994 (4)	0,037 (1)	0,547 (1)	0,075 (10)	
C(10)	0,6579 (5)	0,073 (1)	0,803 (1)	0,083 (10)	
C(11)	0,6390 (5)	-0,0601 (9)	0,569(1)	0,080 (9)	
C(12)	0,5715 (5)	0,1127 (9)	0,587(1)	0,046 (9)	
C(13)	0,5596 (4)	0,3878 (8)	0,383 (1)	0,036(7)	
C(14)	0,5780 (5)	0,456(1)	0,295(1)	0.052 (8)	
C(15)	0,5569 (7)	0,568 (1)	0,294 (2)	0,095 (13)	
C(16)	0,5207 (7)	0,612(1)	0,380 (2)	0,095 (13)	
C(17)	0,5031 (6)	0,540(1)	0,470 (2)	0,072 (11)	
C(18)	0,5219 (6)	0,428 (1)	0,473 (1)	0.059 (9)	
C(20)	0,6718 (4)	0,3952 (9)	0,601 (1)	0,040 (7)	
C(21)	0,6875 (5)	0,486(1)	0,5297 (9)	0.043 (7)	
C(22)	0,6674 (6)	0,596 (1)	0,562 (2)	0.068 (10)	
C(23)	0,6319 (6)	0,612 (1)	0.662 (1)	0.071 (10)	
C(24)	0,6167 (5)	0,518(1)	0,729 (1)	0.069 (9)	
C(25)	0,6348 (5)	0,409 (1)	0,698 (1)	0,048 (8)	
Tabelle 2. Ausgewählte Geometrische Parameter (Å, °)					
P(3) - S(1)	1	L.926 (4) Pr	9) = S(2)	1 911 (5)	
P(3)-O(1)		L593 (8) P(-0(2)	1 589 (7)	
		-,	,	1,007 (7)	

P(3)-N(2) P(3)-N(4) N(1)-N(2) N(4)-N(5) C(6)-O(6) C(6)-N(5) C(6)-N(7)	1,71 (1) 1,653 (9) 1,39 (2) 1,42 (1) 1,22 (1) 1,37 (1) 1,37 (2)	P(9)-N(8)P(9)-N(10)N(7)-N(8)N(10)-N(11)C(12)-O(12)C(12)-N(1)C(12)-N(1)	1,687 (9) 1,665 (9) 1,40 (1) 1,38 (1) 1,19 (1) 1,39 (2) 1,39 (1)
C—C (Phenyl) Bereich:	1,38 (2) (Mi 1,34 (2)-1,41	ittelwert) (2)	
C(Methyl)—N Bereich:	1,47 (3) (Mi 1,43 (2)-1,50	ittelwert) (2)	
$\begin{array}{c} S(1)-P(3)-O(1)\\ O(1)-P(3)-N(2)\\ O(1)-P(3)-N(4)\\ N(2)-P(3)-N(4)\\ \end{array}\\ \begin{array}{c} C(1)-\\ C(12)\\ C(1)-\\ C(12)\\ C(4)-\\ P(3)-\\ C(4)-\\ P(3)-\\ C(7)-\\ C(6)-\\ C(7)-\\ C(6)-\\ C(7)-\\ C(6)-\\ C(7)-\\ C(6)-\\ C(7)-\\ C(6)-\\ C(7)-\\ C(6)-\\ C(1)-\\ N(2)-\\ C(1)-\\ $	$\begin{array}{c} 117,3 (3) \\ 96,4 (5) \\ 106,9 (4) \\ 105,0 (4) \\ -N(1)-N(2) \\ N(1)-N(2) \\ N(1)-N(2) \\ -N(4)-N(5) \\ -N(4)-N(5) \\ -N(4)-N(5) \\ -N(4)-N(5) \\ -N(4)-N(5) \\ -N(4)-N(5) \\ -N(7)-N(8) \\ -N(1)-N(1) \\ -N(1) \\$	$\begin{array}{ccccc} S(2)-P(9)-O(2)\\ O(2)-P(9)-N(8)\\ O(2)-P(9)-N(10)\\ N(8)-P(9)-N(10)\\ (2)-P(9)-N(10)\\ (2)-P(3)-R(1)\\ (2)-P(3)-R(1)\\ (2)-R(1)\\ (2)$	117,9 (3) 96,4 (4) 107,2 (4) 103,8 (4)
N(10) C(7)- N(8)- C(7)- N(8)-	I—N(11)—C(12) −N(7)—C(6)—C −N(7)—C(6)—C −N(7)—C(6)—N −N(7)—C(6)—N	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
C(5)- N(4)- C(5)- N(4)- N(1)-	-N(5)-C(6)-C -N(5)-C(6)-C -N(5)-C(6)-N -N(5)-C(6)-N -N(2)-P(3)-N	$\begin{array}{ccc} 0(6) & 137 (1) \\ 0(6) & -9 (2) \\ 0(7) & -40 (1) \\ 0(7) & 174,1 (9) \\ 0(4) & 143,0 (8) \end{array}$	
N(5) N(7) N(11)	-N(4)—P(3)—N -N(8)—P(9)—N -N(10)—P(9)-	$\begin{array}{ll} I(2) & -45,9 \ (8) \\ I(10) & 146,0 \ (7) \\ -N(8) & -51,8 \ (7) \end{array}$	

Die Struktur wurde mit direkten Methoden gelöst (MULTAN: Main, Lessinger, Woolfson, Germain & Declercq, 1977). Eine sinnvolle Lösung der Struktur in der zentrosymmetrischen Raumgruppe Pnma konnte nicht erhalten werden. Diese Raumgruppe hätte bei Z = 8 und somit einem halben Molekül in der asymmetrischen Einheit eine Spiegelebene oder ein Symmetriezentrum im Molekül erfordert. Wie die gelöste Struktur zeigt, ist keine dieser Bedingungen auch nur annähernd erfüllt. Alle anderen Rechnungen wurden mit dem Programmsystem Xtal2.6 (Hall & Stewart, 1989) durchgeführt. Die gegen Ende der Verfeinerungen versuchte Verfeinerung der H-Atomlagen der Methylgruppen mit isotropen Temperaturfaktoren führte zwar zu einer Verbesserung der R-Werte, ergab aber keine sinnvollen Atomlagen. Diese H-Atome wurden deshalb unter Annahme einer jeweils gestaffelten Anordnung der Methylgruppen geometrisch gesetzt. Den betreffenden H-Atomen wurden die isotropen Temperaturfaktoren der an sie gebundenen C-Atome zugewiesen. Die Positionen der Phenyl-H-Atome wurden dage-

gen mit verfeinert mit festen isotropen Temperaturfaktoren. In der endgültig erhaltenen Struktur liegt die polare Achse in einer Richtung parallel zur gewellten 'Ringebene'. Eine Rechnung mit den Atomkoordinaten -z ergab demzufolge kein abweichendes Ergebnis.

Wir danken Herrn Kollegen D. Lenz für die Hilfe bei den Messungen. Dem Fonds der Chemischen Industrie gilt unser Dank für finanzielle Unterstützung.

Die Liste der Strukturfaktoren, anisotropen Verschiebungsfaktoren, H-Atom Koordinaten und vollständigen geometrischen Daten sind bei dem British Library Document Supply Centre (Supplementary Publication No. SUP 71650: 21 pp.) hinterlegt. Kopien sind erhältich durch: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF Aktenzeichen: SH1063]

Literatur

- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Bünger, T. (1983). Dissertation, Freie Universität Berlin, Deutschland.
- Engehardt, U., Bünger, T. & Viertel, H. (1984). J. Crystallogr. Spectrosc. Res. 14, 603-615.
- Engelhardt, U. & Simon, A. (1992). Acta Cryst. C48, 492-495, 495-498.
- Hall, S. R. & Stewart, J. M. (1989). Herausgeber. Xtal2.6 Users Manual. Univ. Western Australia, Australia, und Maryland, VStA.

Main, P., Lessinger, L., Woolfson, M. M., Germain, G. & Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. York, England, und Louvain, Belgien.

Simon, A. (1992). Dissertation, Freie Universität Berlin, Deutschland

Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965), J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1994). C50, 777-781

Structural Investigations of a Tetracyclic endo-Norborenvl Derivative

BARRY A. LLOYD*

Department of Chemistry, Weber State University, Ogden, Utah 84408, USA

ATTA M. ARIF, ROBERT J. COOTS AND EVAN L. ALLRED[†]

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA

(Received 29 January 1993; accepted 16 November 1993)

Abstract

The X-ray crystal structure of endo, exo-tetracyclo- $[6.2.1.1^{3.6}.0^{2.7}]$ dodec-9-en-*anti*-11-yl *p*-bromobenzo-

† Deceased 8 July 1991.

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved